

#### CHILD OCCUPANT PROTECTION AND FUTURE MOBILITY

#### Kristy Arbogast, PhD

Co-Scientific Director Center for Injury Research and Prevention

Valentina Graci, Declan Patton, Jalaj Maheshwari



## AUTOMATED EMERGENCY BRAKING

- Most research focused on crash avoidance
  - Are there particular crash scenarios where AEB is most effective?
- What about the influence of AEB on occupant positioning?
  - If crash is avoided...
  - If subsequent crash occurs...
- Future mobility modes where front seat is reclined may present unique challenges for rear seat occupants



## DIFFERENT AEB PULSES EXIST IN THE MODERN FLEET



Mean displacement: **11** cm (head) & **6** cm (trunk)

Graci et al 2019



Mean displacement: **15** cm (head) & **8** cm (trunk)

Osth et al 2013

- How the AEB is achieved varies by vehicle make & model
- Results in different pre-crash occupant motion



### **AEB PULSE CHARACTERISTICS**



Maximum deceleration → not the only factor determining the head and trunk

excursion of an occupant during AEB.

Children's Hospital of Philadelphia<sup>\*\*</sup>

Graci et al 2019

#### QUANTITATIVE CHARACTERIZATION OF AEB PULSES ACROSS THE MODERN FLEET OBJECTIVES

- 1. Characterize the different AEB pulses currently on the road based on their pulse characteristics (e.g. Maximum Deceleration, Jerk, Ramp-time, etc.)
- 2. Categorize the AEB pulses based on their pulse characteristics, so that future physical testing can be optimized by using representative AEB pulse categories.



## **CHARACTERIZING AEB PULSES**

- AEB data/videos of 210 vehicles (2013-2019 model year) from Insurance Institute for Highway Safety (both 20 km/h and 40 km/h)
  - 2278 AEB tests were reviewed: →1665 without contact with the target
    - $\rightarrow$  613 with contact with the target





## **AEB PULSE CHARACTERISTICS**





Other characteristics: Mass, Model Year, Contact, Speed



#### **NON-CONTACT AEB PULSE CHARACTERISTICS**



- Steady-state deceleration startdefined as the first point where the vehicle deceleration was above 85% of the peak deceleration
- Steady-state deceleration end defined as the last point where the vehicle deceleration was above 85% of the peak deceleration

Other characteristics: Mass, Model Year, Speed





- Quantify the rate of contact in the AEB tests per Vehicle Model Year
- AEB pulses were categorized using machine learning clustering methodology (pamk and k-mean unsupervised learning methods):
  - All pulses
  - Non-contact AEB pulses only



# **RATE OF CONTACT IN AEB TESTS**

| Vehicle<br>Model Year | N of<br>tests | N of tests<br>with contact | Rate of contact |
|-----------------------|---------------|----------------------------|-----------------|
| 2013                  | 128           | 77                         | 60.2%           |
| 2014                  | 325           | 217                        | 66.8%           |
| 2015                  | 287           | 117                        | 40.8%           |
| 2016                  | 432           | 108                        | 24.9%           |
| 2017                  | 489           | 67                         | 13.7%           |
| 2018                  | 275           | 21                         | 7.6%            |
| 2019                  | 342           | 6                          | 1.8%            |

Increased crash avoidance, increased aggressivity of braking pulse.



### **VARIETY OF AEB PULSES**





## **CATEGORIES AEB PULSES**



Statistically significant differences in jerk, ramp time and max deceleration



Graci et al 2021

#### **AEB PULSE CHARACTERISTICS**





#### **NON-CONTACT AEB PULSES ONLY**



AEB pulses without contact

|   | Cluster | Jerk<br>(g/s) | Ramp<br>Time<br>(s) | Steady-<br>State<br>Acc (g) | Steady<br>State<br>Time<br>(s) | Time<br>of<br>Dec<br>(s) | Max<br>Dec<br>(g) | Mass<br>(Ibs) | Speed<br>(kph) |
|---|---------|---------------|---------------------|-----------------------------|--------------------------------|--------------------------|-------------------|---------------|----------------|
|   | 1       | 1.08          | 0.88                | 0.91                        | 0.62                           | 1.09                     | 0.94              | 3538.4        | 20.2           |
| _ | 2       | 2.24          | 0.45                | 0.91                        | 0.13                           | 0.98                     | 0.98              | 3684.3        | 27.3           |
|   | 3       | 0.75          | 1.21                | 0.84                        | 0.37                           | 1.97                     | 0.93              | 3656.9        | 39.9           |
|   | 4       | 1.04          | 0.64                | 0.58                        | 0.43                           | 1.23                     | 0.66              | 3939.9        | 22.1           |

Cluster 1→ shorter pulse, lower speed Cluster 2→ greatest jerk, shortest Ramp-time\* Cluster 4→ lowest Max Decel Cluster 3→ longest Ramp-time

\* Recent model year vehicles most represented in cluster 2



## STUDY OF RECLINED PASSENGERS

- Current research efforts are focusing on reclined adult passengers and injury risk in future seating configurations for autonomous scenarios.
- There is a lack of focus on injury risk for rear seat passengers, such as children, seated behind reclined front seat passengers.



## AEB PULSE CHARACTERISTICS AND RECLINED PASSENGERS

 In novel future seating configurations (e.g. reclined seats) for autonomous driving, AEB pulses with increased Jerk may lead to occupant head impact even in absence of a crash.





## CONTEXT

- 92% front seat occupants position their seat aft of the mid-track position (Reed et al, 2020)
- For 2<sup>nd</sup> row child occupants, the head is the most frequently injured body region due to contact with vehicle interior structures (Arbogast et al, 2012)
- Most common contact location was the frontrow seat back (Bohman et al, 2011)

How does this change with reclined front seat occupants and AEB?



## **NEXT RESEARCH QUESTION**

To identify **the likelihood and characteristics of head contact** for a rear seat child occupant for different combinations of front seat recline and track positions.

- 1. How the presence of a booster seat influences the likelihood and characteristics of head contact
- 2. How exemplar AEB pulses influence the likelihood and characteristics of head contact





# **METHODS**

- MADYMO child facet models
  - 10yo (no booster)
  - 6yo (low-back and high-back booster)
- 3-point seat belt with retractor
- 2<sup>nd</sup> row seat from 2017 4-door sedan
  - Chosen to match with previous study of human volunteers (Graci et al, 2019)
- Front seat initially in aft-most position
  - If legs of 2nd row child occupant intersected, the front seat was translated forward 50 mm
  - If head contact occurred in the simulation, the front row was translated 50 mm forward and simulation repeated until no contact occurred
  - Then the front row was translated 25 mm rearward for the final simulation
- AEB pulse from same vehicle









## **SEAT RECLINE**

- Example photos with child in low-back booster
  - Nissan Rogue SUV
  - 7yo (stature, 1.35 m; body mass, 28.2 kg)





### OCCUPANTS POSITIONED ON THEIR RESPECTIVE CRS





## RESULTS

| Age         | CRS  | Recline<br>angle (°) | Seat track<br>distance<br>(mm) | Head<br>Contact |
|-------------|------|----------------------|--------------------------------|-----------------|
| 10 year old | None | 25                   | 0                              | No              |
|             |      | 45                   | 0                              | Yes             |
|             |      |                      | 25                             | Yes             |
|             |      |                      | 50                             | No              |
|             |      | 60                   | 50                             | Yes             |
|             |      |                      | 100                            | Yes             |
|             |      |                      | 125                            | Yes             |
|             |      |                      | 150                            | No              |



| Age        | CRS               | Recline angle (°) | Seat track<br>distance (mm) | Head Contact |
|------------|-------------------|-------------------|-----------------------------|--------------|
| 6 year old | Low-back booster  | 25                | 0                           | No           |
|            |                   | 45                | 0                           | Yes          |
|            |                   |                   | 50                          | Yes          |
|            |                   |                   | 100                         | Yes          |
|            |                   |                   | 125                         | No           |
|            |                   |                   | 150                         | No           |
|            |                   | 60                | 100                         | Yes          |
|            |                   |                   | 150                         | Yes          |
|            |                   |                   | 175                         | Yes          |
|            |                   |                   | 200                         | No           |
|            | High-back booster | 25                | 0                           | No           |
|            |                   | 45                | 50                          | No           |
|            |                   | 60                | 150                         | No           |



# HOW DOES THIS VARY BY AEB PULSE?

Representative AEB pulses based on 4 Clusters

| AEB<br>Cluster | Peak jerk<br>[g/s] | Ramp time<br>[s] | Steady-state<br>acceleration [g] | Steady-state<br>duration [s] | Fall time [s] | Peak acceleration [g] |
|----------------|--------------------|------------------|----------------------------------|------------------------------|---------------|-----------------------|
| 1              | 1.08               | 0.88             | 0.91                             | 0.62                         | 1.09          | 0.94                  |
| 2*             | 2.24               | 0.45             | 0.91                             | 0.13                         | 0.98          | 0.98                  |
| 3              | 0.75               | 1.21             | 0.84                             | 0.37                         | 1.97          | 0.93                  |
| 4              | 1.04               | 0.64             | 0.58                             | 0.43                         | 1.23          | 0.66                  |

- 6yo (low back)
- 10yo (no booster)

- Retractor locking at 0.3g
- Without vs with prepretensioner

\* Most representative of current vehicles



#### **10 YEAR OLD HEAD CONTACT** Without pre-pretensioner With pre-pretensioner

Position not achievable

Head contact

No head contact





Numbers in cells are contact velocity in m/s



# **6 YEAR OLD HEAD CONTACT**

Position not achievable Head contact No head contact



#### Numbers in cells are contact velocity in m/s

Children's Hospital of Philadelphia<sup>™</sup>

# **KEY DISCUSSION POINTS**

- AEB pulses vary and have become more aggressive in recent model years
- Different AEBs→ different head motion.
  - AEB pulse (cluster 2) with greater jerk and shorter ramp-time led to greater impact velocity and more frequent head contact.
- Generally, 60 degree reclined seat back angle showed the highest number of head contacts and greater impact velocity across all AEB pulses.
- Optimal restraint (6 year old in a high back booster) resulted in no head contact – minimized belt slip out
- Lack of muscle response in these models limits its biofidelity
- These studies considered optimally positioned occupants real child occupants in more naturalistic postures could have increased risk of head contact
- Intervention opportunities improved restraints (pre-pretensioner showed benefits) and/or improved energy management of front seat backs



## TAKE AWAY MESSAGES

- When designing reclined seating configurations, the effect of the reclined seat back on the rear-seated passengers need to be considered also in non-crash events.
- Pre-pretensioner in the rear-seat has the potential to decrease head impact events, although they can still occur in the most extreme recline angle/track position configurations.
- Data could be used to improve AEB standards for autonomous vehicles.





Check for updates

#### Quantitative characterization of AEB pulses across the modern fleet

V. Graci<sup>a</sup>, M. Maltenfort<sup>b</sup>, M. Schneider<sup>a,c</sup>, M. Griffith<sup>a</sup>, T. Seacrist<sup>a</sup>, and K. B. Arbogast<sup>a,d</sup>

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING https://doi.org/10.1080/10255842.2022.2032003





# Head contacts in second-row pediatric occupants when the front-seat is reclined during automated emergency braking

Declan A. Patton<sup>a</sup> (D), Jalaj Maheshwari<sup>a</sup>, Kristy B. Arbogast<sup>a,b</sup> (D) and Valentina Graci<sup>a,c</sup>



## ACKNOWLEDGEMENTS

#### **CChIPS | Center for Child Injury Prevention Studies**























Valentina Graci, PhD Assistant Professor, CHOP and Drexel



Declan Patton, PhD Research Scientist, CHOP



Jalaj Maheshwari, MS Research Project Engineer, CHOP

Kristy Arbogast, PhD – arbogast@chop.edu

